Stat 501 – Probability Theory I Some Lecture Notes

نویسنده

  • Ryan Martin
چکیده

These notes are based on the two lectures1 I gave in Stat 501, Probability Theory I, as a substitute for Professor Cheng Ouyang. There is a brief discussion of the so-called “basic grouping lemma” concerning independent σ-algebras, followed by a more detailed discussion of the Borel–Cantelli lemma, some applications, and some elaborations on independence. Independence, and the basic grouping lemma Let {Bt : t ∈ T} be a collection of independent σ-algebras, i.e., for any k ≥ 1, for any t1, . . . , tk, and any Bt1 , . . . , Btk in Bt1 , . . . ,Btk , the events Bt1 , . . . , Btk are independent. It makes sense that disjoint sub-collections of the σ-algebras are also independent. Here is the formal result. Lemma (Grouping Lemma). Let {Bt : t ∈ T} be an independent collection of σ-algebras. Let S be an index set with the property that, for s ∈ S, Ts ⊂ T and {Ts : s ∈ S} are pairwise disjoint. Define BTs = smallest σ-algebra containing all Bt, t ∈ Ts. Then {BTs : s ∈ S} is an independent collection of σ-algebras. Proof. Pretty easy, see pages 101–102 in Resnick. Despite the complicated σ-algebra terminology, the Grouping Lemma is quite intuitive. For example, let X1, . . . , Xn be a collection of independent random variables. Then the Grouping Lemma says that • σ({X1, . . . , Xk}) and σ({Xk+1, . . . , Xn}) are independent σ-algebras; • ∑k i=1Xi and ∑n i=k+1Xi are independent random variables; • and, more generally, f(X1, . . . , Xk) and g(Xk+1, . . . , Xn) are independent random variables for any suitable real-valued functions f and g. These lectures are based, in part, on Sidney Resnick’s A Probability Path.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SYLLABUS – MCS 494: Probability on Graphs

OFFICE HOURS: 1-2 MWF. TEXT: None. I will try to point out the sections of some relevant books, which will address the corresponding material we cover. Some of these books are listed below in bibliography. PREREQUISITE: Math 310 (first course in Linear Algebra), and Stat 401 (Introduction to Probability) or equivalent courses. Basic knowledge of graphs is welcome, (some parts of MCS 261), but n...

متن کامل

STAT 566 Fall 2013 Statistical Inference Lecture Notes

2 Lecture 2: Evaluation of Statistical Procedures I 2 2.1 How to compare δ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2 Comparing risk function I: Bayes risk . . . . . . . . . . . . . . . . . . . . . . 3 2.3 Bayes theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.4 Bayes risk revisited . . . . . . . . . . . . . . . . . . . . . . . . . ...

متن کامل

Probability Theory 1 Lecture Notes

These lecture notes were written for MATH 6710 at Cornell University in the Fall semester of 2013. They were revised in the Fall of 2015 and the schedule on the following page re ects that semester. These notes are for personal educational use only and are not to be published or redistributed. Almost all of the material, much of the structure, and some of the language comes directly from the co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014